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We present an experimental and theoretical study of the photoluminescence spectra of individual doubly
charged quantum dot molecules. The quantum dot molecules consist of two vertically stacked InAs self-
assembled quantum dots in a GaAs Schottky diode structure. We study two cases: �1� the two dots are charged
with two electrons coherently coupled through electron tunneling and �2� the two dots are charged with two
holes and coherently coupled through hole tunneling. The optically excited states consist of the two charges
along with one or two additional electron-hole pairs, i.e., a doubly charged exciton and biexciton. We deter-
mine the spin states and the corresponding spectral fine structure and show how this fine structure depends on
vertical electric and magnetic fields. We find that the results are in large part qualitatively similar for the two
cases. However, when magnetic fields are applied, we find a strong g factor resonance and evidence of a
bonding/antibonding reversal for the hole-tunneling case only. We discuss the implications for quantum infor-
mation processing using spins confined in proximate dots.
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I. INTRODUCTION

The development of devices for spintronics and solid-
state quantum information processing has been a primary
motivation in condensed-matter physics research over the
past decade.1 Because of their ability to spatially localize
single spins, quantum dots �QDs� have been at the forefront
of this field. One of the first proposals for the implementation
of quantum information processing in solid-state systems
was based on gated exchange interactions between spins in
two neighboring QDs.2 Over the years there has been con-
siderable experimental and theoretical progress in the coher-
ent control and interaction of spins in both single and
coupled QDs. Single spin manipulations and controllable
coupling have been demonstrated in lithographically defined
QDs.3–7 Optically active QDs offer the possibility of using
ultrafast laser techniques for initialization, readout, and co-
herent manipulation of spins.8–12 Further development of
such techniques, particularly for coupled QDs, requires de-
tailed characterization of the Coulomb and spin interactions
in both the ground and optically excited states.

The first optical studies of single quantum dot molecules
�QDMs� found spectroscopic evidence of coupling between
the dots.13 More detailed studies became possible when the
QDMs were embedded into a diode structure that enabled
tuning of the relative energy levels of the two dots by an
applied electric field.14,15 In 2006 the spectroscopic signa-
tures of coupling in charged QDMs were identified and it
was shown that selective tunneling of either electrons or
holes could be engineered.16,17 Substantial progress has been
made in understanding the properties of QDMs,18–20 includ-
ing the origins of spin fine structure21 and the properties of
spins delocalized over the entire QDM.22,23 Techniques have
been developed for differential transmission spectroscopy,24

mapping excited states,25 and executing conditional quantum
dynamics.26 In parallel, there has been substantial progress in
calculating the optical spectra of QDMs.27–37

Because of potential applications in solid-state quantum
information processing or spin-based logic, the case of two

spins confined in a pair of coupled QDs deserves special
attention. Some aspects of the spectra of doubly charged
QDMs at zero magnetic field have been discussed in previ-
ous works.18,21 In this paper, we present a detailed study of
the charge and spin interactions in optically active QDMs
charged with two electrons or two holes as a function of both
applied electric and magnetic fields. We provide explanations
of spin and charge fine structure and discuss how the mag-
nitudes of the underlying interactions can be controlled by
sample parameters. Our sample structure and experimental
methods are described in Sec. II. In Sec. III we present our
method for analyzing coherent tunnel coupling using atomi-
clike basis states and matrix Hamiltonians. Experimentally
observed spectra are presented and large-scale features are
explained in Sec. IV. In Sec. V we present the state Hamil-
tonians, discuss the spin-exchange interactions, and discuss
how these interactions depend on the sample structure. In
Sec. VI we discuss the application of magnetic fields that
introduce Zeeman splittings between orthogonal spin projec-
tions and reveal resonant changes in g factor that can be used
to electrically modulate spin splitting and identify the orbital
character of delocalized molecular states. After a summary in
Sec. VII, we discuss the implications of this work for quan-
tum information processing and spin-based logic in Sec.
VIII. The Appendix has detailed information on the basis
states and the Hamiltonians presented throughout the work.

II. SAMPLE STRUCTURE AND PHOTOLUMINESCENCE
MEASUREMENTS

The QDMs we study are grown by the molecular-beam
epitaxial deposition of two closely spaced layers of self-
assembled InAs/GaAs QDs. The QDs were embedded in the
insulating region of n-i or p-i Schottky diodes grown on
doped GaAs substrates. Tellurium �from a GaTe source� was
used for n-type doping and beryllium for p-type doping. The
bottom QD was separated from the doped buffer layer by an
80 nm undoped GaAs layer. After a 2 min growth interrup-
tion at 580 °C, the QDs were grown at a substrate tempera-

PHYSICAL REVIEW B 78, 115316 �2008�

1098-0121/2008/78�11�/115316�20� ©2008 The American Physical Society115316-1

http://dx.doi.org/10.1103/PhysRevB.78.115316


ture of 520 °C and a growth rate of �0.04 monolayers/s.
Sample rotation was stopped during InAs deposition to pro-
duce a large QD density gradient across the wafer. The two
layers of dots are separated by a GaAs barrier of thickness d,
grown at 530 °C, as shown in the cross-sectional scanning
tunneling microscope �XSTM� image of a typical QDM in
Fig. 1�a�. Strain causes the dots of the second layer to nucle-
ate preferentially on top of the dots in the first layer, thereby
forming QDMs.

The vertical height of the QDs is controlled by the appli-
cation of an indium flush technique: a thin GaAs cap �2–4
nm� was grown over the QDs at 520 °C, followed by a slow
ramp and anneal at 580 °C for 100 s.38,39 This technique
creates QDs with a disk shape, as can be seen in Fig. 1�a�.
The vertical height of the QDs determines the ground-state
transition energy. The diode structures were completed above
the QDs with GaAs /Al0.7Ga0.3As layers ��280 nm total
thickness� to reduce the current. For the n-i diodes, a 40 nm
AlGaAs layer was grown near the sample surface. For the p-i
diodes, a 270 nm AlGaAs layer started 2 nm above the QDs
in order to inhibit escape of carriers from the QDs. Both
types of samples were capped with 10 nm of GaAs to pre-
vent AlGaAs oxidation.

Following growth, low-temperature photoluminescence
images of the wafers were obtained to locate the regions of
appropriate density for single molecule spectroscopy. A
“shadow mask” was used to isolate single QDMs: a semi-
transparent layer of titanium �5 nm� was deposited on the
sample surface followed by a 130 nm layer of aluminum.
Electron-beam lithography was used to pattern the aluminum
with 1 �m apertures.

Even if both dots in a QDM are grown under nominally
identical conditions, strain and asymmetry generally lead to
nondegenerate dots with slightly different energy levels. The
diode structure allows application of an electric field in the
direction of the molecular axis �see Fig. 1�b��. The applied
field controls the relative energy levels of the two dots and
can be used to tune either electron or hole energy levels into
resonance in situ. The substrate doping and relative heights
of the two dots determine whether electrons or holes
tunnel.17

For electron tunneling, a p-type substrate is used. For hole
tunneling, an n-type substrate is used. The heights of the dots
are chosen such that the bottom dot has a lower confinement
energy �i.e., redshifted relative to the top dot�. An example of
each sample type is shown in Fig. 2. In our QDMs, the
additional charges are generated optically. For example, a
two-electron ground state is populated when the hole tunnels
to the p-type substrate before an injected electron-hole pair
recombines. Two such tunneling events are required to popu-
late the doubly negatively charged ground state, but the ex-
cess electrons then remain confined in the dot until either a
free hole tunnels back into the dot or the excess electron
tunnels out. This technique allows us to measure the full
spectra of several different charge configurations. Growing
the QDs far from the underlying doping region enhances this
effect. For the case of electron charging �in the p-type
Schottky diode�, the AlGaAs barrier was grown close above
the QDs to keep the electrons from tunneling to the surface.
Because optical charging is a random process, several differ-
ent charge states appear simultaneously in our spectra. The
particular location of each charge configuration is deter-
mined by Coulomb interactions. Specific charge configura-
tions can be identified from their relative locations and spin
fine structure as discussed below.21
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FIG. 1. �Color online� �a� Cross-sectional scanning tunneling
microscope image of a QDM; image adapted from Ref. 25. �b�
Schematic depiction of the band structure of a quantum dot mol-
ecule containing two electron spins with an electric field applied
along the �100� direction. �c� Charge configurations of a doubly
negatively charged QDM in its ground state �bottom row, e2−�, first
optical excited state �middle row, X2−�, and second optical excited
state �top row, XX2−�. Electrons and holes are restricted to the
lowest-energy levels in each dot. The number of spin configurations
is shown in the bottom left corner of each box. The configurations
in the gray boxes are considered unstable at electric fields close to
the resonance of the electron levels due to fast relaxation of the
hole�s�.

b

a

FIG. 2. �Color online� Example sample dimensions for �a� hole
tunneling in a sample with d=4 nm and �b� electron tunneling in a
sample with d=14 nm. Schematics are not to scale. We have mea-
sured samples with d ranging from 2 to 16 nm.
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We probe the energy levels of QDMs using photolumines-
cence. Because ensembles of QDMs have a very large dis-
tribution of parameters, resolving charge and spin fine struc-
ture requires isolating single QDMs. Individual QDMs were
optically excited and detected through an aluminum shadow
mask with 1 �m diameter apertures. Excitation was per-
formed with a continuous-wave titanium-sapphire laser
tuned to wavelengths between 895 and 930 nm. The laser
wavelength is energetically well below the wetting layer
emission at about 870 nm. The collected photoluminescence
signal was dispersed with a 0.75 m monochromator equipped
with an 1100 mm−1 line grating and was detected by a
liquid-nitrogen-cooled charge coupled device �CCD� camera.
The overall spectral resolution is about 70 �eV.

The energy of the emitted photons is determined by the
difference in energy between the initial and the final states of
the optical recombination. The photoluminescence spectrum
of QDMs is recorded as a function of the electric field ap-
plied to the diode structure. The individual spectra �photolu-
minescence �PL� intensity vs energy� are assembled to create
a spectral map with energy on one axis, applied electric field
on the other axis, and the PL intensity color coded �see Fig.
4�.

III. ATOMIC BASIS STATES AND MOLECULAR
ORBITALS

In this report we focus on QDMs that are charged with
either two electrons or two holes. Figure 1�c� depicts the
possible charge configurations for a doubly negatively
charged QDM in its optical ground state �e2−�, excitonic state
�X2−�, and biexcitonic state �XX2−�. We consider only the
lowest confined energy levels for electrons in the conduction
band and holes in the valence band of each QD.

In QDMs, there are several possible spatial distributions
of charges. We will describe the spatial distribution of
charges as �

me,ne

mh,nh
�, where me�h� and ne�h� indicate the numbers

of electrons �holes� in the bottom and top dots, respectively.
We will continue to use the excitonic notation to describe the
total number of charges in a QDM �i.e., X2+ refers to any
configuration of one electron and three holes�. Coulomb in-
teractions between multiple charges in a QDM shift the rela-
tive energy levels of each configuration. These Coulomb in-
teractions are the origin of the characteristic energy shifts for
PL lines of excitons in single QDs that contain more than a
single electron-hole pair �for example the trion, biexciton,
etc.�.

We calculate the energy levels of QDMs in a matrix
Hamiltonian using atomiclike basis states that are coupled
together via tunneling. As an example, we consider two X2−

states, neglecting the spin interactions that will be discussed
in Sec. V:

Ĥ =

�2,1

1,0
��1,2

1,0
�

�E0 + � t

t E0 + edF
� . �1�

E0 is the excitonic energy determined by the electron-hole
pair and � is an energy shift due to different Coulomb inter-

actions in the two basis states. Because we have chosen the
energy of the configuration where each dot is occupied by
one electron to be field independent, the energy of the state
� 2,1

1,0 �, which has a net charge of one electron per dot, has no
dependence on the applied electric field �F�. � 1,2

1,0 � has a net
charge of two electrons in the top dot, and thus edF captures
the change in energy with applied electric field.40 e is the
electron charge and the dots are separated by an effective
barrier thickness d. The off-diagonal matrix element t is the
rate at which electrons tunnel between the two dots. The
magnitude of the tunnel coupling depends on the thickness of
the barrier between the dots and the relative detuning of the
electron energy levels in each dot.

When energy levels are tuned into resonance, coherent
tunnel coupling causes the particles to form molecular orbit-
als delocalized over both dots and the intervening barrier.
The formation of these molecular orbitals results in anti-
crossings �ACs� in the energy levels as a function of applied
electric field.14 See, for example, Fig. 3�b�. The energy dif-
ference between the upper and the lower branches is the
anticrossing gap. The magnitude of this gap is determined by
the degree of tunnel coupling, which is in turn determined by
the properties of the barrier between the dots. The substrate
doping and relative heights of the two dots can be used to
select whether electrons or holes tunnel.17 Electrons and
holes have substantially different tunneling rates due to their
different effective masses.17 In addition, holes have a spin-
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c

FIG. 3. �Color online� �a� The lowest-energy molecular states in
charged QDMs are determined by sequentially filling the orbitals
with particles. �b� Delocalized molecular states of X2−, which has
three electrons �and one hole; not shown�, have different orbital
configurations. �c� At an anticrossing of the e2− state, the upper and
lower branches have singlet orbital configurations. Only one ex-
ample of triplet orbital configurations is labeled. Both �b� and �c�
plot state energies as a function of applied electric field. The plots
are extracted from full calculations of the energy levels similar to
those in Fig. 7 and consequently exhibit some fine structure due to
spin interactions that are explained in Sec. V.
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orbit interaction that can substantially change the tunnel
coupling.23

Our use of atomiclike basis states coupled together via
tunneling is similar to the Heitler-London method that can be
used to analyze the states of simple diatomic molecules such
as H2.41 In Eq. �1� the basis states are simply two possible
spatial distributions of the particles. Away from resonance
�large magnitude of F�, the tunnel coupling is minimal and
the eigenvalues of Eq. �10� are essentially just the energies of
the two basis states. This is the atomiclike or Heitler-London
limit. On resonance �edF=��, the eigenvalues of Eq. �1� are
E0+�− t and E0+�+ t. The eigenstates that correspond to
these values are, respectively, the symmetric �bonding� and
antisymmetric �antibonding� combination of the two basis
states.

An alternative to the Heitler-London approach is to begin
with the single-particle eigenstates of the molecule: the
bonding and antibonding molecular orbitals.42 The formation
of these molecular orbitals is depicted in the energy diagrams
in Fig. 3�a�. The ground state of a charged molecule is de-
termined by filling these molecular orbitals with particles
beginning with the lowest-energy state, as shown in Fig.
3�a�. In Figs. 3�b� and 3�c� we show how these orbital dia-
grams can be used to label the molecular states at anticross-
ings in the X2− and e2− states. The fine structure that appears
in these anticrossings will be explained in Sec. V. Here we
focus only on the formation of delocalized molecular orbit-
als. Because the applied electric field controls the magnitude

of tunnel coupling, the states of QDMs evolve continuously
between atomiclike and molecular orbitals as a function of
applied electric field.

The molecular-orbital formulation provides important in-
sights into the states of QDMs. For two electrons, the lowest-
energy configuration places both electrons in the same orbital
state, which requires that they be in a spin singlet. If the
spins are in separate orbital states, both singlet and triplet
states are possible; we show one possible triplet state in Fig.
3�c�. If a third electron is added, the lowest-energy configu-
ration has two electrons in a spin singlet in the bonding
orbital, with the remaining electron alone in the antibonding
orbital. Note that in Fig. 3 the single-particle bonding orbital
has the lowest energy. This is the case when t is positive, as
it is for natural molecules. However, when holes tunnel
through a relatively thick barrier, spin-orbit interactions can
reverse the sign of t and create an antibonding ground
state.23,43

IV. MEASURED AND CALCULATED
PHOTOLUMINESCENCE SPECTRA

In Fig. 4 we present full spectral maps of both positively
and negatively charged QDMs. By studying the full spectral
map, we can identify the relationship between neutral, singly,
and doubly charged excitons and demonstrate that the same
concepts apply equally well to QDMs charged with both
electrons and holes. We consider two QDMs: a QDM with
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FIG. 4. �Color online� Comparison between the field-dependent spectra of �a� a QDM for which the electron levels are tuned into
resonance and �b� a QDM for which the hole levels are tuned into resonance. In both QDMs the bottom dot has a smaller band gap. The
QDM in �a� with a dot separation of 16 nm was embedded in a p-type Schottky diode structure, whereas the QDM in �b� with a dot
separation of 4 nm was embedded in an n-type Schottky diode structure. In both spectra the ground-state molecular resonance of the neutral
exciton and the x patterns of the singly and doubly charged excitons are marked. A dark rectangle is sometimes used to clearly identify the

corresponding spectral features. The labels between panels �a� and �b� indicate X0-like �
1,ne

1,nh
�, X+-like �

1,ne

2,nh
�, X−-like �

2,ne

1,nh
�, and XX0-like �

2,ne

2,nh
�

intradot �single-dot� transitions, where ne�h� is the number of electrons �holes� in the top dot that do not take part in the optical transition. Like
all spectral maps presented here, the intensity is displayed on a nonlinear quasilogarithmic scale chosen to reveal weak spectral features
without saturating strong features. Note that the shaded area in �b� also shows the X0 and X+ PL transitions from a second molecule.
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16 nm barrier embedded in a p-type diode to obtain electron
tunneling �Fig. 4�a�� and a QDM with a 4 nm barrier embed-
ded in an n-type diode to obtain hole tunneling �Fig. 4�b��.
Both spectral bias maps in Fig. 4 span the same energy
range. The maps are aligned on the intradot transitions of the
neutral exciton confined in the bottom dot, � 1� ,0

1� ,0 �. The under-
lined numbers indicate the spatial locations of the electron
and hole that recombine.

The presence of additional electrons or holes in the top
dot introduces small energy shifts. Consequently, in the spec-
tra we see a family of PL lines labeled �

1� ,ne

1� ,nh
�. This family of

lines all have a single electron-hole pair in the bottom dot
that recombine but a different number of electrons, ne, or
holes, nh, in the top dot. Analogous families of PL lines
are obtained for the intradot transitions when the bottom
dot contains different numbers of charges: the positive
trion �X+=1 electron+2 holes, �

1� ,ne

2� ,nh
��, negative trion

�X−=2 electrons+1 hole, �
2� ,ne

1� ,nh
��, or biexciton �XX0

=2 electrons+2 holes, �
2� ,ne

2� ,nh
��. The splittings between the

lines of each family depend on the separation of the QDs and
are not resolved in the PL spectral map for the QDM with a
barrier of 16 nm. These Stark shifts of the intradot transitions
allow for remote optical detection of the charge state of the
other dot.20,24 It is also worth noting that while the X−-like
family is typically about 6 meV below the X0-like family, the
X+-like family varies from about 1 meV below to about 5
meV above the X0-like family. The shift of the XX0 family is
correlated with the variation in the X+ family.

In both spectra in Fig. 4 we have marked the PL patterns
that arise from molecular tunnel resonances in the initial and
final states of the neutral, the singly charged �trion�, and the
doubly charged exciton transitions. While the neutral exciton
exhibits just a single AC, both the singly and the doubly
charged exciton show “x” patterns, which will be described
in detail in Sec. IV A.16 “x” patterns are unambiguously and
self-consistently assigned to their respective charge state us-
ing features such as the magnitude of the ACs, the spin fine
structure,21 and the observation of replica ACs in the corre-
sponding biexciton transitions.20

A. X patterns

The x pattern arises when there are ACs in both the initial
and the final states of the optical transition and these ACs are
separated in bias by only a small difference in Coulomb
energy.16 In Fig. 4 we see that both the trion and the doubly
charged exciton x patterns span the energy between the trion
family �X�-like transitions� and the X0-like transitions. For
example, the � 1� ,2

1� ,0 � PL line of the doubly negatively charged
exciton has energy quite similar to the � 1� ,0

1� ,0 � neutral exciton
state because both states have one electron and one hole in
the bottom dot. The � 2� ,1

1� ,0 � doubly negatively charged exciton
PL line has energy similar to the � 2� ,0

1� ,0 � negative trion PL line
because each has two electrons and one hole in the bottom
dot. Thus the neutral excitonlike � 1� ,2

1� ,0 � and trionlike � 2� ,1
1� ,0 � lines

define the top and bottom, respectively, of the x pattern. The
negative trion x pattern spans the same range for similar
reasons.

In Fig. 5�a� we show the X2− PL lines for a QDM where
electrons tunnel through a 14 nm barrier. Because the inten-
sity of PL lines can vary by orders of magnitude, we have
extracted the energies of each PL line from a spectral map
such as Fig. 4�a�. On the left side of Fig. 5�a� the PL lines
form the x pattern. On the right side an additional anticross-
ing appears. To explain the origin of these coarse features, in
Fig. 5�b� we plot the energies of the optically excited �X2−�
and optical ground �e2−� states. The calculation of these en-
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FIG. 5. �Color online� �a� Energy of experimentally observed
photoluminescence lines as a function of applied electric field for a
QDM with electrons tunneling through a 14 nm barrier. �b� Energies
of optically excited �X2−, blue �dark gray�� and optical ground �e2−,
red �light gray�� states calculated using values extracted from �a�.
�c� Calculated transition spectra using states of �b�. Dashed lines A,
B, and C are used to show how anticrossings in the optically excited
and optical ground states appear as anticrossings in the PL spectra.
Four transitions that appear in the PL spectra are indicated with
vertical arrows and labeled.
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ergy levels will be described in Sec. V; here only the relevant
range of energy and applied electric field is displayed. In Fig.
5�c� we show a calculated transition spectrum. The energies
of the calculated PL lines are determined by taking the en-
ergy difference between all possible optically excited and
optical ground states. The intensities of the lines are deter-
mined by taking into account the optical selection rules and
the decrease in PL intensity for the recombination of elec-
trons and holes in different dots. More details on the calcu-
lation of energy levels and PL spectral lines are given in Sec.
V D.

In Fig. 5�b� we have indicated four transitions from the
optically excited �X2−� to the optical ground �e2−� states and
labeled the corresponding PL lines in the calculated spectra
�Fig. 5�c��. The transitions � 1� ,2

1� ,0 � and � 2� ,1
1� ,0 �, which are the neu-

tral excitonlike and negative trionlike optical transitions, re-
spectively, bound the x pattern on the top and bottom.
Dashed lines A, B, and C are used to indicate how the anti-
crossings that appear in the PL spectra can each be attributed
to a specific anticrossing in either the X2− or the e2− state.
The x pattern in the transition spectra arises because the left-
most anticrossing of the e2− state �B� occurs at a value of the
applied electric field that is similar but not identical to the
anticrossing in the X2− state �A�. The additional anticrossing
at C results from a second anticrossing in the optical ground
�e2−� state.

Not all of the photoluminescence lines predicted by the
calculation appear in the data. There are several reasons for
the absence of predicted PL lines. First, higher-energy X2−

states can thermally relax to lower-energy states before
electron-hole recombination and the emission of a photon.
Consequently, some photoluminescence lines from high-
energy initial states are suppressed. Second, the range of
electric fields in which photoluminescence lines can be ob-
served is limited. At large electric fields electron-hole pairs
can ionize before optical recombination. At small electric
fields, the optical charging of the two-electron state becomes
improbable due to limited tunneling of holes to the substrate.
Third, indirect photoluminescence lines can become weak
due to small wave-function overlap and consequently small
optical matrix elements. Despite these limitations, there is
excellent agreement between the observed and calculated
spectral maps in Fig. 5.

B. Doubly charged biexciton spectra

In Fig. 6 we show a spectral map for a QDM where elec-
trons tunnel through a 14 nm barrier. The figure includes PL
from the singly and doubly charged excitons along with the
corresponding biexcitons. In the inset we extract the energies
of each PL line and use color coding to identify the excitonic
state responsible for each line. The biexciton transitions �e.g.,
XX2−� have a replica anticrossing at the same applied electric
field as one anticrossing of the corresponding excitonic x
pattern �X2−�.20 Similar replica anticrossings in the biexciton
state appear for both the neutral �X0 ,XX0� and the singly
charged exciton �X− ,XX−�.

The replica anticrossings in the XX2− PL spectra arise
from anticrossings in the X2− state, which is both the final

state of the XX2− biexcitonic transition and the initial state of
the X2− excitonic transition. To illustrate this point, in Fig. 7
we show a complete calculated level diagram for a QDM
charged with two excess electrons. The figure shows the op-
tical ground states �e2−, red �lower group��, the excitonic
states �X2−, blue �middle group��, and the biexcitonic states
�XX2−, green �upper group��. Details on how to calculate
these energy levels will be given in Sec. V. The anticrossing
in the lower left of the X2− state �around 1280 meV� is in the
final state of the � 2� ,2

2� ,0 � biexcitonic transition and the initial
state of the � 1� ,2

1� ,0 � excitonic transition.

C. Hole tunneling

As seen in Fig. 4, doubly positively charged QDMs also
exhibit x patterns. In Fig. 8 we show the experimentally
measured and calculated x patterns for a doubly positively
charged QDM with holes tunneling through a 6 nm barrier. A
close look at the upper left corner of the x patterns shows a
fine-structure doublet, which is more clearly resolved for the
case of hole tunneling than for electron tunneling. This fine
structure results from spin interactions. In Sec. V we will
present the state Hamiltonians, including spin interactions,
and discuss why some spin fine structure is more evident for
the case of hole tunneling.

V. INCLUDING COULOMB AND SPIN INTERACTIONS IN
THE HAMILTONIANS

In this section we present the Hamiltonians that describe
the e2− and X2− states, including Coulomb and spin interac-
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FIG. 6. �Color online� Molecular resonances in the PL transition
of a QDM when it is charged with a single electron and with two
electrons. Inset: Extracted transition energies for the doubly nega-
tive exciton �red �thick, gray��, the doubly negative biexciton �cyan
�thick, darkest gray��, the negative trion �thin, lightest gray�, and the
negative biexciton �thin, dark gray�. The shaded box is plotted with
a different intensity scale to reveal the biexcitonic features.
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tions, at zero magnetic field. The Hamiltonians for QDMs
containing two excess holes are qualitatively identical and
are listed explicitly in Sec. VI. The importance of Coulomb
interactions can be seen in Fig. 7. Because of the exciton
binding energy, large changes in energy are determined by
the total number of electron-hole pairs �e.g., e2− is about
1280 meV lower than X2−, which is about 1280 meV lower
than XX2−�. For states with the same total number of charges
�for example, X2−�, the different spatial distributions of
charges �e.g., � 12

01� and � 21
10�� have slightly different Coulomb

interactions and thus slightly different energies. The Cou-
lomb interactions are described by terms with the form Vcd

ab,
which is the energy from the interaction between particles a
and b located in dots c and d. Because the two dots are not
identical, the Coulomb energy between two particles con-
fined in the bottom dot �for example, two electrons: VBB

ee �
differs slightly from the Coulomb energy between two par-
ticles confined in the top dot �VTT

ee � or in separate dots �VBT
ee �.

The Coulomb energy terms are discussed in detail in the
Appendix.

To include spin interactions, we must consider not just the
spatial distribution of charges but also the spin orientation of
each charge. We will continue to use the �

me,ne

mh,nh
� notation, but

we will now explicitly list the spin orientation for each
charge. We will use ↑ ,↓ and ⇑ ,⇓ to denote the spin orienta-
tions of electrons and holes. The hole spin is really a spinor
orientation, although it is dominated by the �3 /2 heavy-hole
contribution to the spinor.44 When there are two electrons or
two holes present, we will add an additional subscript �S or
T� to differentiate between singlet and triplet configurations.
So, for example, � ↓,↑

0,0 �S indicates a QDM with one electron in
each of the dots where the two spins are collectively in a
singlet state �i.e., � ↓,↑

0,0 �S= 1
�2

�↓ , ↑−↑ ,↓��.
We continue to use the atomiclike states where electrons

and holes are localized in individual dots as the basis states
for Hamiltonians that describe the tunnel coupling, Coulomb,
and spin interactions. We focus our discussion of each
Hamiltonian on the spin interactions unique to that total
charge state. Because tunneling is a spin-conserving process,
only states with the same total spin projection are coupled
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FIG. 7. �Color online� Calculated ground �red, lowest group�,
first optically excited �blue, middle group�, and second optically
excited �green, highest group� energy levels of a doubly negatively
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tical arrows. As described in the text, energies are referenced to the
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FIG. 8. �Color online� �a� Energy of experimentally observed
photoluminescence lines as a function of applied electric field for a
QDM with holes tunneling through a 6 nm barrier. �b� Calculated
spectra using values extracted from �a�. Two transitions are labeled
and can be compared to Fig. 4�b� to identify the position of this x
pattern relative to other charge states.
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together. Molecular states are thus superpositions of different
atomiclike states with the same total spin projection.

For electron tunneling in a p-type Schottky diode, the
applied electric field creates a substantial energy difference
between the confined hole energy levels. As a result, all ob-
served PL lines originate in states where the holes are in the
bottom QD. For the sake of clarity, we include only the states
with the holes in the bottom dot in the Hamiltonians pre-
sented here. Note that the energy levels in Fig. 7 are calcu-
lated using all possible spin and charge distributions. Ener-
gies are referenced to � 1,1

0,0 �, the state with one electron in
each dot. � 1,1

0,0 � therefore has zero energy and no dependence
of energy on the applied electric field. States that have an
unequal net charge in the two dots have an energy that de-

pends on the applied electric field and therefore a large Stark
shift.

A. e2− state: Kinetic exchange

We consider first the optical ground �e2−� state, which
contains only two electrons. There are three possible spatial
distributions: �1� both electrons in the bottom dot, �2� one
electron in each dot, and �3� both electrons in the top dot.
When both electrons are in the same dot, the Pauli principle
requires them to be in a spin singlet. When the electrons are
located in separate dots, singlet and triplet configurations of
the spins are possible. There are thus six possible spin con-
figurations and the system can be described by a Hamiltonian
of the following form:

�↓↑,0

0,0
�

S
�↓ ,↑

0,0
�

S
�↓ ,↑

0,0
�

T
�↓ ,↓

0,0
�

T
�↑ ,↑

0,0
�

T
�0,↓↑

0,0
�

S
�2�

Ĥe2−
=	

VBB
ee − edF − �2t 0 0 0 0

− �2t VBT
ee 0 0 0 − �2t

0 0 VBT
ee 0 0 0

0 0 0 VBT
ee 0 0

0 0 0 0 VBT
ee 0

0 − �2t 0 0 0 VTT
ee + edF


 .

The additional factor of �2 for the tunneling rate arises be-
cause either electron can tunnel.45

Because tunneling is spin preserving, only the � ↓,↑
0,0 �S state

can couple to the � ↓↑,0
0,0 �S and � 0,↓↑

0,0 �S states. In the Hamiltonian
matrix this is expressed by the nonzero off-diagonal matrix
elements with a value of −�2t, which create anticrossings
and molecular orbitals that are superpositions of the singlet
states. The triplet configurations cannot tunnel couple and
consequently do not anticross. The tunnel coupling of sin-
glets but not that of triplets induces a splitting between the
singlet and the triplet states at anticrossings. Because of its
origin in tunneling, this energy splitting between singlet and
triplet states is called kinetic exchange.41

The kinetic exchange interaction is somewhat different
from the usual exchange Coulomb interaction. First, the sin-
glet line has both upper and lower branches with different
molecular-orbital characters. Second, the degree of separa-
tion between singlet and triplet states depends on the applied
electric field, as shown in the inset of Fig. 9. Moreover, the
separation between singlet and triplet states is influenced by
the kinetic exchange at two separate anticrossing points. See,
for example, the ACs labeled B and C in Fig. 5 and the inset
of Fig. 9.

Each of the two anticrossings �e.g., B and C in Fig. 5�
occur when the state that has one electron in each dot be-
comes resonant with a state that has two electrons in the

same dot. Because of slight asymmetry between the dots,
these resonances happen at slightly different values of the
applied electric field. The energy difference between the two
anticrossing points is given by differences in the Coulomb
interaction energy: U= �VBB

ee +VTT
ee −2VBT

ee � /2. This energy dif-
ference results in an electric-field separation between the two
tunnel resonances of 2U /ed.

Away from resonance, the singlet and triplet states return
to energy degeneracy. If the tunneling rate �2t becomes com-
parable to U, the singlet and triplet states are unable to return
to degeneracy between the two primary tunnel resonances.
The singlet and triplet then remain split between the two
anticrossing points as shown in the inset of Fig. 9. The lines
are separated by a “singlet-triplet �S-T� splitting” with the
singlet at lower energy than the triplet. This singlet-triplet
splitting can also be seen clearly in Figs. 6 and 5�a�. In the
data, the PL line resulting from optical recombination to the
singlet state is at higher energy than the PL line from optical
recombination to the triplet state. The energy order of the
singlet and triplet appears in reverse because the two-
electron states shown in the inset of Fig. 9 are the final states
of the optical transitions responsible for the PL lines in Figs.
6 and 5�a�. A transition that ends in the lowest-energy state
�singlet� therefore has greater PL energy.

Halfway between the two tunnel resonances the singlet-
triplet splitting is given by
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�S-T =
1

2
��U2 + 8t2 − U� . �3�

A fit to the measured singlet-triplet splitting of several
QDMs �10 nm�d�16 nm� as a function of the tunneling
rate yields U=8.0 meV. This agrees well with the indepen-
dently measured separation of the two ACs.46 For the case of
two holes we find that U=18 meV, which also is plotted in
Fig. 9.

B. X2− state: Electron-hole exchange

The X2− state contains three electrons and one hole. Since
there cannot be more than two electrons occupying any state,
there are only two spatial distributions of electrons: �1� two
electrons in the bottom dot with one electron in the top dot or
�2� one electron in the bottom dot and two electrons in the
top dot. Likewise, there are two spatial configurations for the
additional hole—either in the bottom or in the top QD. Con-
sequently, there are 4 possible spatial configurations and 16
possible spin configurations.47

We need to consider only four of these spin configurations
to explain the electron-hole exchange interactions, so we re-
strict the following discussion to the case of electron tunnel-
ing with the hole confined to the bottom dot with spin up.
The four spin configurations are � ↑↓,↑

⇑,0 �, � ↑↓,↓
⇑,0 �, � ↑,↑↓

⇑,0 �, and
� ↓,↑↓

⇑,0 �. Note that the spin structure of X2− is equivalent to that
of X0 because there is only one unpaired electron and hole.
The two spin-paired electrons play no role in the spin inter-
actions.

The Hamiltonian that corresponds to these four basis
states fully captures the physics of electron-hole exchange in

the vicinity of a QD molecular tunnel resonance. The Hamil-
tonian for the case with hole spin down can be determined by
inverting the orientation of all spins in each basis state,

ĤX
2− = E0Î +

�↑↓,↑
⇑ ,

� �↑↓,↓
⇑ ,0

� �↑ ,↑↓
⇑ ,0

� �↓ ,↑↓
⇑ ,0

�

	
� 0 t 0

0 � 0 t

t 0 edF − Je-h 0

0 t 0 edF + Je-h


 .

�4�

E0 is the exciton energy and Î is the identity matrix. The
basis states always have two electrons in one dot and one
electron in the second dot. The Pauli principle requires that
the pair of electrons in a single dot must be in a spin singlet.
Because tunneling is a spin-conserving process, only a single
electron can tunnel between the dots. For example, if there
are two spin-up and one spin-down electrons, the two
spin-up electrons must be in separate dots and only the spin-
down electron can tunnel. In contrast, in the e2− state either
of the two electrons can tunnel through the barrier, which
results in the additional factor of �2 for the tunneling matrix
element in Eq. �2�. � captures the energy shift between the
two spatial distributions of electrons, which results from dif-
ferent Coulomb interactions with the hole and the asymmetry
between the two dots. The definition of � as sums of and
differences between the Coulomb terms Vcd

ab is provided in
the Appendix. � determines the values of the applied electric
field where states become degenerate in energy. Je-h is the
�isotropic� electron-hole exchange interaction. Here we
chose Je-h�0 only for the configurations where a single elec-
tron and single hole are in the same dot. This is consistent
with experimental observations within the limits of our cur-
rent experimental resolution. We note that we have ignored
the presence of aniostropic electron-hole �e-h� exchange,
which will cause splittings in the X2− and X2+ but which is
below the resolution of our PL measurements.

In the top part of Fig. 10�a� we plot the eigenenergies of
the X2− in the vicinity of the electron-tunneling resonance.
As the states pass through the molecular resonance, the � 1,2

1,0 �
states, where electron-hole exchange is active, evolve into
the � 2,1

1,0 � states, where electron-hole exchange is strongly
suppressed. Consequently, the splitting induced by the
electron-hole exchange is gradually reduced. Far away from
the resonance the splitting induced by electron-hole ex-
change is 2Je-h; in the center of the AC the splitting is re-
duced to Je-h.

The fine-structure splitting induced by electron-hole ex-
change should be mapped by the PL spectrum, but in the
measured spectrum in Fig. 6 or 5 it is not observed. There are
two primary reasons for the absence of the splitting induced
by electron-hole exchange in the X2− PL spectrum. For our
explanation we focus on the center of the X2−-tunneling reso-
nance, where the interdot transitions � 1,2

1,0 �, which contain the
information of the electron-hole exchange splitting, are opti-
cally strong and where the splitting has dropped to only half
its value.
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FIG. 9. �Color online� Absolute value of the singlet-triplet �S-T�
splitting as a function of the tunneling rate t as defined in the inset.
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=18 meV, which corresponds to the case of hole tunneling. Inset:
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The first reason for the absence of the electron-hole ex-
change induced splitting in the PL splitting is a competition
between electron-hole and kinetic exchange. The center of
the X2− AC is always close in electric field �about
6 meV /ed� to the corresponding two-electron AC in the fi-
nal state of the optical transition. See, for example, the prox-
imity between lines A and B in Fig. 5. When the electron-
tunneling rate is sufficiently large, a residual kinetic
exchange splitting still exists in the final state even at the
applied electric field at the center of the X2− AC. Figure 10�a�
provides a detailed look at this residual splitting. Because the
two states split by the electron-hole exchange interaction re-
combine to different final states �one to the singlet and one to
the triplet�, the splitting of the PL lines is determined by a
competition between the electron-hole exchange splitting in
the initial X2− state and the kinetic exchange splitting in the
final e2− state.

More specifically, the lower-energy electron-hole
exchange-split state is a superposition of the � ↑↓,↑

⇑,0 � and � ↑,↑↓
⇑,0 �

states coupled together by tunneling. Optically allowed re-
combination from this superposition ends in the � ↑,↑

0,0 �T triplet
state. On the other hand, the higher-energy electron-hole
exchange-split state is a superposition of � ↑↓,↓

⇑,0 � and � ↓,↑↓
⇑,0 �,

which recombine to the � ↑,↓
0,0 �S singlet state.48 The total split-

ting of the PL lines, with contributions from both the
electron-hole exchange splitting of the initial X2− states and

the kinetic exchange splitting of the final e2− states, is given
by

�exch = Je-h +
s

2
− �s2/4 + 2t2, �5�

where s measures the separation between the two ACs of the
initial and final states in meV �here s=6 meV�. The result
for Je-h=0.2 meV is plotted in Fig. 10�b�. We find that the
splitting of the PL lines should be around zero for the tun-
neling rates that we typically observe in QDMs with electron
tunneling.

The second reason that fine-structure splitting induced by
electron-hole exchange is difficult to resolve is that the en-
ergy of interdot transitions depends strongly on applied elec-
tric field. Consequently, small fluctuations in the local elec-
tric field at the QDM can induce large shifts in the transition
energy. These fluctuations cause the interdot transition to
broaden spectrally. In QDMs with large dot separation,
which are typical for studies of electron tunneling, the line-
widths for interdot transitions can be as large as 500 �eV.
QDMs that exhibit hole tunneling typically have relatively
small tunneling rates even at dot separations that are two to
three times smaller than the dot separation for QDMs with
electron tunneling.17 This results in a negligible kinetic ex-
change splitting in the final state and in sharper interdot tran-
sitions. Consequently, a much clearer optical spectrum that
resolves the spin fine structure is obtained from doubly posi-
tively charged QDMs that exhibit hole tunneling. See, for
example, Fig. 8.

C. XX2− state

As shown in Fig. 1�c�, in the XX2− state the electron en-
ergy levels of each dot are fully occupied with two electrons
each. Consequently, electrons cannot tunnel between the two
dots. There are, however, two holes that can be distributed
between the energy levels of the two dots and couple the
energy levels via coherent tunneling. The Hamiltonian for
the XX2− state is therefore identical to the Hamiltonian for
the h2+ state, with the addition of minor corrections due to
the change in Coulomb interactions with the electrons. The
Hamiltonian for the h2+ state is presented explicitly in Sec.
VI, so we do not repeat it here. The h2+ state Hamiltonian is
analogous to the Hamiltonian for the e2− state at zero mag-
netic field. The only change is the reduced magnitude of the
tunneling matrix element due to the heavier hole effective
mass, which reduces the magnitude of the anticrossings. This
can be seen clearly in Fig. 7, where the XX2− and e2− states
have qualitatively identical energy levels. The only quantita-
tive differences are the position of the anticrossings, which
are determined by the Coulomb offsets, and the magnitudes
of the anticrossings.

D. Calculational parameters

The Hamiltonians presented above require input values of
the parameters, which can be extracted directly from the
measured spectra. For example, in Fig. 5�a� the two horizon-
tal lines at 1284 and 1290 meV arise from “direct” recombi-
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FIG. 10. �Color online� �a� Energy levels of the doubly negative
exciton �blue, top group� and the two electrons �red, bottom group�
in the vicinity of the electron-tunneling resonance where the hole is
in the bottom QD. The cartoons on the right give the spin configu-
rations for the different states. Tunneling and optical selection rules
couple only the configurations in the dashed �solid� boxes. �b� Split-
ting between the Mz=1→Mz=0 transition �bright singlet� and the
Mz=2→Mz=1 transition �dark triplet� as a function of tunneling
rate in the final state according to Eq. �5� with Je-h=0.2 meV and
�=6 meV. The shaded areas indicate roughly the expected splitting
for the typically achieved tunneling rates for QDMs with hole �red,
upper highlight� and electron �blue, lower highlight� tunneling.
Note: The calculation in panel �a� is valid for any dot separation.
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nation of an electron and hole both located in the bottom dot.
The energy difference between these lines is caused by the
spectator electrons. When both spectator electrons are in the
top dot, the PL line has an energy similar to that of the
neutral exciton family of PL lines. When one of the spectator
electrons is in the bottom dot, the energy shifts by 6 meV,
characteristic of the negative trion family of lines. From this
shift we determine �, the difference in Coulomb energies
between these two configurations. The slope of the diagonal
lines in Fig. 5�a� determines d, which we generally find to be
in reasonable agreement with the slope predicted using the
thickness of the barrier. The combination of � and d deter-
mines the change in applied electric field required to move
between the two anticrossing points �A and B in Fig. 5�.
Anticrossings at A in Fig. 5�a� arise from the anticrossing of
the X2− state. From this anticrossing we measure t. Anticross-
ings at B and C in Fig. 5�a� arise from the e2− state; from this
anticrossing gap we confirm the magnitude of �2t.

The energies of the X2− and e2− states shown in Fig. 5�b�
are calculated using Eqs. �2� and �4� and the parameter val-
ues extracted from the data. For comparison with the ob-
served spectral map in Fig. 5�a�, we take the difference be-
tween the initial- and the final-state energies and factor in the
strength of the optical transitions to generate the calculated
spectral map shown in Fig. 5�c�. Such calculated spectral
maps are a fit to the data in the sense that the values of
individual parameters used in the calculation are extracted
directly from the data as described above. Individual param-
eters are varied to achieve a best fit only when incomplete
spectral maps prevent direct extraction of the actual value
from the data. The specific values extracted from the data
and used in the calculations can be found in Table. I. The
excellent agreement between the observed and calculated
spectra confirms that the matrix descriptions of the states in
Eqs. �2� and �4� capture the essential physics, including spin
interactions, of these states.

As a final validation of the matrix Hamiltonians presented
here, in Fig. 11 we show the experimentally observed and
calculated spectral maps for a sample with holes tunneling
through a 2 nm barrier. There appears to be a qualitative
difference between Figs. 11 and 8, but this difference is en-
tirely explained by the thinner barrier. The thinner barrier
leads to substantially larger tunneling rates and therefore re-
sults in singlet and triplet states that remain separated
throughout the observed range of applied electric field, as
discussed in Sec. V A. This effect is reproduced in the cal-

culated spectra that use the larger tunneling parameter. Not
all of the lines predicted by the calculated spectral map ap-
pear in the data because the thin barrier enables rapid thermal
relaxation of high-energy initial states before emission of a
photon.

VI. APPLIED MAGNETIC FIELDS

Application of a magnetic field lifts the degeneracy be-
tween opposing spin projections and leads to a Zeeman split-
ting that is proportional to both the applied magnetic field
and the g factor. Because the g factor depends on material
parameters, it depends on the amplitude of the wave function
in regions with different material compositions and can thus
be used to identify the orbital character of molecular states.22

We apply a magnetic field along the optical axis of the emit-
ted photoluminescence �Faraday geometry� by placing the
sample in the bore of a split coil superconducting magnet
and positioning the sample under the focus of a 0.45 numeri-
cal aperture �NA� lens using low-temperature nonmagnetic
translation stages.

Our discussion of magnetic fields will focus on the states
of a doubly positively charged QDM �h2+ and X2+� where
holes tunnel between the dots. We will first discuss the Zee-

TABLE I. Parameters extracted from experimental spectral
maps and used to generate calculated spectral maps. Values are in
meV except d, which is in meV/V.

6 nm hole 2 nm hole 14 nm electron

E0 1261 1294 1290

� 2.17 1.2 −5.71

� 8 10.85 17.12

d 24.41 10.58 35.67

t 0.1462 0.86 0.566

Je-h 0.1725 0.1553 0.200

F
X2+

( )1012

( )1021

S-T
splitting

FIG. 11. �Color online� �a� Energy of experimentally observed
photoluminescence lines as a function of applied electric field for a
QDM with holes tunneling through a 2 nm barrier. The S-T splitting
is indicated. �b� Calculated spectra using values extracted from �a�.
Two transitions are labeled; � 1� ,0

2� ,1 � points to two lines because the
transition can end in the singlet �upper PL line� or triplet �lower PL
line� configuration of � 0,0

1,1 �. FX2+ indicates the electric field at which
the anticrossings of the X2+ states occur.
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man splitting, which depends on the spin orientations of any
unpaired electrons and holes. We will then consider how the
formation of molecular orbitals changes the amplitude of
hole wave functions and leads to resonant changes in the g
factor and thus in the Zeeman splitting.

A. Zeeman splitting

To include magnetic fields, we must add a Zeeman term to
the Hamiltonians. We will consider only QDMs with a thin
tunnel barrier where t remains positive.23 If we restrict our-

selves to magnetic fields in the Faraday geometry, the Zee-
man interaction term has the form49

ĤZeeman�B� = �B�geSe −
gh

3
Ĵh�B , �6�

with �B as the Bohr magneton, ge as the longitudinal elec-
tron g factor, gh as the longitudinal heavy-hole g factor, Se as
the electron-spin projection ��1 /2�, Jh as the heavy-hole
spin projection ��3 /2�, and B as the magnetic field. For easy
comparison, we will present the basis states as well as the
zero magnetic field and Zeeman terms of the Hamiltonians.

The Hamiltonian for the optical ground state �h2+� is

� 0,0

⇓ ⇑ ,0
�

S
� 0,0

⇓ , ⇑ �S
� 0,0

⇓ , ⇑ �T
� 0,0

⇓ , ⇓ �T
� 0,0

⇑ , ⇑ �T
�0,0

0, ⇓ ⇑ �S

Ĥh2+
=	

�2 − edF − �2t 0 0 0 0

− �2t 0 0 0 0 − �2t

0 0 0 0 0 0

0 0 0 2	gh 0 0

0 0 0 0 − 2	gh 0

0 − �2t 0 0 0 �3 + edF


 , �7�

where �2 and �3 are energy shifts due to the Coulomb interactions �Vcd
ab� whose explicit definition is given in the Appendix and

	=
�BB

2 . The addition of magnetic fields is quite simple in this case because the net g factor for a pair of oppositely oriented
spins is zero. Only two states have any unpaired holes; in each case the net g factor for the two parallel spins is simply twice
the single spin g factor. The spin orientation determines the sign of the contribution from the g factor: a hole with spin up
corresponds to −gh because of the minus sign for holes in Eq. �6�.

The Hamiltonian for the optically excited state �X2+� is

� ↑ ,0

⇓ ⇑ , ⇓ � � ↓ ,0

⇓ ⇑ , ⇑ � � ↑ ,0

⇓ ⇑ , ⇑ � � ↓ ,0

⇓ ⇑ , ⇓ � � ↑ ,0

⇓ , ⇓ ⇑ � � ↓ ,0

⇑ , ⇓ ⇑ � � ↑ ,0

⇑ , ⇓ ⇑ � � ↓ ,0

⇓ , ⇓ ⇑ �

ĤX2+
=	

�4 + 	�ge + gh� 0 0 0 t + 	g� 0 0 0

0 �4 − 	�ge + gh� 0 0 0 t − 	g� 0 0

0 0 �4 + 	�ge − gh� 0 0 0 t − 	g� 0

0 0 0 �4 − 	�ge − gh� 0 0 0 t + 	g�

t + 	g� 0 0 0 
+ + 	�ge + gh� 0 0 0

0 t − 	g� 0 0 0 
+ − 	�ge + gh� 0 0

0 0 t − 	g� 0 0 0 
− + 	�ge − gh� 0

0 0 0 t + 	g� 0 0 0 
− − 	�ge − gh�


 ,

�8�

where �4 is again an energy shift resulting from Coulomb
interactions explicitly defined in the Appendix and

+�−�=edF�Je-h. g� is the contribution to the g factor from
the amplitude of the wave function in the barrier, which will
be discussed in detail in Sec. VI B.

To illustrate the contribution of the Zeeman splitting
terms, in Figs. 12�a� and 12�b� we set g�=0 and calculate the

energies of the X2+ and h2+ states as a function of increasing
magnetic field. The parameters used in the calculation are
those extracted from Fig. 11 for a QDM with 2 nm barrier
and given in Table I. The calculations are performed for a
fixed value of applied electric field; for clarity only a subset
of all lines is shown. The values of the electron and hole g
factors used in the calculation are extracted from magneto-

DOTY et al. PHYSICAL REVIEW B 78, 115316 �2008�

115316-12



photoluminescence spectra taken on this specific molecule.
The independent values for electron and hole g factors are
obtained by analysis of spectra taken at several angles of the
magnetic field �not shown�.50 The values obtained are ge=
−0.745 and gh=−1.4.

The X2+ states have Zeeman splittings that parallel the
neutral exciton. In analogy with the bright exciton, � ↑,0

⇓⇑,⇓ �
and � ↓,0

⇓⇑,⇑ � have a net g factor that is the sum of the electron
and hole g factors. Similarly, in analogy with the dark neutral
exciton, � ↑,0

⇓⇑,⇑ � and � ↓,0
⇓⇑,⇓ � have a net g factor that is the

difference between the electron and hole g factors. The small
value of this difference results in the smaller Zeeman split-
ting between these lines. Unlike the dark neutral exciton,
these states are optically active because holes of either spin
projection are available in the bottom dot for recombination
with the electron. The h2+ states contain no electrons, so their
Zeeman splitting is determined entirely by the orientation of
the two holes. Because they have a pair of oppositely ori-
ented spins, the singlet and triplet with total angular momen-
tum zero do not split. The triplets with total angular momen-
tum 3, which have two holes with parallel spin, split by twice
the hole g factor.

The energy order of the lines shown in Figs. 12�a� and
12�b� depends on the magnitude of the electron-hole ex-
change splitting ��e-h� and singlet-triplet splitting ��S-T�. As
discussed in Sec. V, these splittings are a function of the
applied electric field. In Figs. 12�c� and 12�d� we plot the
calculated energies of the X2+ and h2+ states as a function of
applied electric field for a fixed magnetic field of 6 T. The
resonant contribution of the barrier is neglected in Fig. 12.

The Zeeman splitting of optically active photolumines-
cence lines is given by the difference between the Zeeman
splittings in the X2+ and h2+ states. Since the optical selection

rules require that recombining electrons and holes have op-
posite spin orientations, the net g factor for an optically al-
lowed transition is always given by the sum of the electron
and hole g factors. To see how this occurs, we consider the
net Zeeman splitting for the three optical transitions labeled
in Figs. 12�c� and 12�d�, which end in singlet and triplet
optical ground �h2+� states. Because of the tunnel coupling,
the initial states before emission of a photon are superposi-
tions of X2+ states with the same spin projection. The param-
eters � and � give the relative weights of the two compo-
nents of this superposition. The magnitudes of � and � �not
shown� depend on the applied electric field. The constant
factor �BB /2 has been suppressed,

��↑ ,0

⇓ , ⇓ ⇑ � + �� ↑ ,0

⇓ ⇑ , ⇓ � → � 0,0

⇓ , ⇑ �S

�ge + gh� − 0 = �ge + gh� ,

��↓ ,0

⇑ , ⇓ ⇑ � + �� ↓ ,0

⇓ ⇑ , ⇑ � → � 0,0

⇓ , ⇑ �S

− �ge + gh� − 0 = − �ge + gh� ,

��↑ ,0

⇓ , ⇓ ⇑ � + �� ↑ ,0

⇓ ⇑ , ⇓ � → � 0,0

⇓ , ⇑ �T

�ge + gh� − 0 = �ge + gh� ,

��↓ ,0

⇑ , ⇓ ⇑ � + �� ↓ ,0

⇓ ⇑ , ⇑ � → � 0,0

⇓ , ⇑ �T

− �ge + gh� − 0 = − �ge + gh�

��↑ ,0

⇑ , ⇓ ⇑ � + �� ↑ ,0

⇓ ⇑ , ⇑ � → � 0,0

⇑ , ⇑ �T

�ge − gh� − �− 2gh� = �ge + gh� ,

�� ↓ ,0

⇓ , ⇓ ⇑ � + �� ↓ ,0

⇓ ⇑ , ⇓ � → � 0,0

⇓ , ⇓ �T

�− ge + gh� − 2gh = − �ge + gh� .

�9�

A schematic level diagram for these transitions is pre-
sented in Fig. 13. The diagrams for optical recombination to
the � 0,0

⇓,⇑ �S singlet state are identical to the � 0,0
⇓,⇑ �T triplet case

�m=0�. The optical selection rules lead to the prediction that
the application of magnetic fields will result in a doubling of
the spectral map observed at zero field. The two copies
should be separated by a constant Zeeman splitting given
simply by the total g factor �ge+gh� as depicted in the middle
panels of Fig. 13 �“B
0 off-resonance”�. In the right panels
of Fig. 13 we add the resonant contribution of the barrier,
which is known to create electric-field-dependent g factors.22

B. Resonant changes in g factor

Because the g factor depends on material parameters, it is
sensitive to the amplitude of the wave function in regions
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FIG. 12. �Color online� Zeeman splitting of �a� X2+ and �b� h2+

states calculated at a fixed value of the applied electric field. Cal-
culated energies of the �c� X2+ and �d� h2+ states as a function of
applied electric field for a fixed magnetic field of B=6 T. The
boxes indicate the electric field at which the Zeeman splittings in
panels �a� and �b� were calculated. Optically allowed singlet �S� and
triplet �T0 and T3� transitions are indicated.
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comprised of different materials.51,52 In the particular case of
our QDMs, the g factor for holes in InAs dots is negative,
while the g factor for holes in bulk GaAs is positive.53 Reso-
nant changes in the amplitude of the wave function in the
GaAs barrier arise at anticrossings due to the formation of
molecular states.22 Bonding orbitals have a large amplitude
in the barrier and thus add a large contribution from the
GaAs to the overall hole g factor. This adds a positive com-
ponent to the otherwise negative heavy-hole g factor and
suppresses the Zeeman splitting on resonance. In contrast,
antibonding states suppress the contributions from the tail of
the wave function in the barrier, enhance the negative g fac-
tor, and result in increased Zeeman splitting on resonance. In
addition to providing a tool for electrical modulation of g
factors, the resonant changes in g factor can also be used to
measure the orbital character of the delocalized molecular
states and confirm the molecular-orbital filling model pre-
sented in Sec. III.

Before presenting the resonant changes in the g factor for
the X2+ states, we first briefly review how resonant changes
in g factor appear in magneto-PL experiments on the neutral
exciton and positive trion. In Fig. 14�a� we plot the Zeeman
splitting at B=6 T of neutral exciton and positive trion PL
lines from a single QDM with a 2 nm barrier. For the neutral
exciton �X0�, we plot PL lines that originate in both the low-
and the high-energy molecular orbitals. The low-energy mo-
lecular orbital is observed to have a resonant decrease in
Zeeman splitting, which indicates that it has bonding orbital
character. The positive trion �X+� PL, which also comes from
the low-energy molecular orbital, displays a similar resonant
decrease in the Zeeman splitting indicative of bonding or-
bital character. In contrast, the high-energy molecular orbital
of the neutral exciton is found to have a resonant increase in
Zeeman splitting as a result of its antibonding character. The
resonances reach their extreme values at the electric field of
maximum anticrossing for each state �FX0 and Fh+�.

In Fig. 14�b� we plot the Zeeman splitting for the three
pairs of X2+ transitions described in Eq. �9�, which are also

the three pairs of photoluminescence lines clearly visible in
Fig. 11�a�. The X2+ transitions are measured for the same
QDM as the X0 and X+ displayed in Fig. 14�a�. By compar-
ing the observed X2+ PL lines with the lines in the calculated
spectra �Fig. 11�, we determine that the initial state for all
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FIG. 13. Schematic depiction of the Zeeman splitting for optical transitions ending in the singlet and m=0 and m= �1 triplet states. The
resonant changes in splitting are specific to X2+ states in the low-energy molecular branch, which displays antibonding character.
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FIG. 14. �Color online� Measured Zeeman splitting at B=6 T
from a QDM with 2 nm barrier. �a� PL transitions involving the
molecular orbitals of the neutral exciton and positive trion. �b� The
three X2+ PL states in Eq. �9�. The solid lines are fits to the data
using Eq. �10� as described in the text.
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three transitions is the lower-energy molecular branch. The
PL lines resulting from recombination to the singlet and trip-
let with total angular momentum zero �m=0� have a resonant
increase in splitting, reaching a maximum splitting of about
1.2 meV. The photoluminescence lines resulting from recom-
bination to the triplets with total angular momentum of �3
reach a minimum splitting of about 0.2 meV. All three curves
reach extreme values of the Zeeman splitting at approxi-
mately 65 kV/cm, which is the point of maximum anticross-
ing for the optically excited state �FX2+�.

We first consider the transition to the m=0 triplet state:

�� ↑ ,0

⇓ ⇑ , ⇓ � + �� ↑ ,0

⇓ , ⇓ ⇑ � → � 0,0

⇓ , ⇑ �T
.

Because the h2+ �optical ground� state has two oppositely
oriented spins, it has no Zeeman splitting. The observed Zee-
man splitting of the photoluminescence lines must therefore
depend only on the Zeeman splitting in the X2+ �optically
excited� state �see Fig. 13�. The resonant enhancement of the
Zeeman splitting is the signature of an antibonding molecu-
lar orbital, which validates the molecular-orbital filling
model presented above.

In Fig. 15 we show the excitonic transitions and
molecular-orbital filling for QDMs charged with one, two,
and three holes. Bonding and antibonding orbitals are con-
structed from the states of a single tunneling hole. The bond-
ing configuration has lowest energy. For the initial state of

the neutral exciton and the final state of the positive trion, the
orbitals must be filled with one hole. The lowest-energy con-
figuration places this hole in the bonding orbital. We observe
bonding orbital character for low-energy molecular branches
in the neutral and positive trion configurations for this QDM.
For the initial state of the X2+ recombination, the orbitals
must be filled with three holes. The lowest-energy configu-
ration fills the lowest-energy bonding orbital with two spin-
paired holes. The remaining unpaired hole goes in the
higher-energy antibonding orbital. The resonant change in
the g factor comes only from this single unpaired hole. Thus,
the lower-energy molecular branch in the optically excited
state of a doubly charged QDM with 2 nm tunnel barrier
displays antibonding character.

The resonant contribution of the barrier to the g factors of
molecular states is captured in the Hamiltonian �Eq. �8�� by
the term g�. g� is a positive number since it originates in the
g factor of a heavy hole in GaAs. The sign of g� at each
matrix element in the Zeeman Hamiltonian is determined by
the spin orientation of the tunneling hole. If the tunneling
hole has spin up, the additional matrix element would be −g�
because of the minus sign for holes in Eq. �6�. When we
include the additional sign change from the antisymmetriza-
tion of the three-particle basis states, the term that appears in
the Hamiltonian is +g�.

Using Eq. �8�, we can derive an expression for the reso-
nant change in g factor,

1h
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2h
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X+

X2+

bonding
orbital
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FIG. 15. �Color online� �a�
Band schematics for QDMs
charged with one, two, or three
excess holes. �b� Lowest-energy
filling of the molecular orbitals
that form on resonance. �c� PL of
a neutral exciton in a QDM with
holes tunneling through a 2 nm
barrier, which illustrates the for-
mation of molecular orbitals at the
anticrossing.
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g�F� = ge + gh +
2tg�

�e2d2�F − FX2+�2 + 4t2
, �10�

where FX2+ is the electric field of the anticrossing for the X2+

optically excited state. ge+gh is determined by the
asymptotic value of the Zeeman splitting at low applied elec-
tric fields. The asymptotic value of the splitting, 0.707 meV,
corresponds to a total transition g factor of −2.035, which is
quite similar to the total transition g factor found for the
neutral exciton and positive trion �−2.145�. t=0.86 meV, d
=0.39 meV cm /kV, and FX2+ =64.94 kV /cm are deter-
mined by the measured spectra at zero magnetic field. g� is
the only unknown parameter. Treating g� as a free parameter,
we fit Eq. �10� to the data shown in Fig. 14�b�. We find g�
=1.47, which is quite similar to the results found for X0

�1.32� and X+ �1.65�. This fit is shown by the black line in
Fig. 14�b�.

The singlet states have the same spin orientation as the
m=0 triplet states. As a result, the observed enhancement of
the Zeeman splitting for recombination to the singlet states in
Fig. 14 is qualitatively similar to the m=0 triplet states.
However, there is a quantitative offset for the singlet state.
Since the singlet and the m=0 triplet have the same initial
state, this offset must be due to differences in the final state.
Although both the singlet and the m=0 triplet states have
two oppositely oriented spins, the � 0,0

⇓,⇑ �S singlet state is tun-
nel coupled to both � 0,0

⇓⇑,0 � and � 0,0
0,⇓⇑ �, while the m=0 triplet

state remains uncoupled. The observed offset may be due to
the proximity of these additional anticrossings, one of which
occurs at approximately 45 kV/cm.

In contrast to the singlet and m=0 triplet, recombination
to the m= �3 triplet states exhibits a resonant decrease in
Zeeman splitting. This resonant decrease results from the
incomplete cancellation of hole g factors in the initial �opti-
cally excited� and final �optical ground� states. From Eq. �9�
we see that the transition g factor for recombination to the
m= �3 triplet states is given by �ge−gh�− �−2gh�= �ge+gh�.
The resonant enhancement of the g factor from the unpaired
hole in the antibonding orbital effectively increases the mag-
nitude of gh in the initial state but has no effect on −2gh in
the final state because the two parallel holes do not tunnel.
As a result, the Zeeman splitting of the transition on reso-
nance is given by �ge− �gh−g���− �−2gh�= �ge+gh+g��. Be-
cause ge and gh are negative and g� is positive, the observed
Zeeman splitting is reduced by g�. The resonant contribution
of the barrier to the Zeeman splitting of the m= �3 triplet
state is depicted in Fig. 13. The Zeeman splitting of the m
= �3 triplet state in Fig. 14 is fitted by an equation analo-
gous to Eq. �10� using the same parameters found for the
m=0 triplet state.

The full Hamiltonian for the X2+ state �Eq. �8�� has net
tunneling matrix elements of t�g�. Because the sign of g�
depends on the spin orientation of the tunneling hole, the
magnitude of the net tunneling matrix element is spin depen-
dent. The sign of t can be controlled by changing the thick-
ness of the barrier.23

C. QDMs charged with two electrons

Our discussion of applied magnetic fields has focused on
QDMs charged with two resident holes. We have also studied

QDMs charged with two resident electrons in a magnetic
field. Doubly negatively charged QDMs exhibit a Zeeman
splitting that can be described with equations analogous to
Eqs. �7� and �8�. However, doubly negatively charged QDMs
do not exhibit any resonant change in Zeeman splitting as a
function of applied electric field. Plots analogous to Fig. 14
show simply a flat horizontal line at the Zeeman splitting
given by the sum of the g factors for the electron and hole.
The amplitude of the wave function in the barrier is larger
for electron tunneling than for hole tunneling �at similar bar-
rier thicknesses�. However, the g factor for electrons in bulk
GaAs is −0.44. This value is quite similar to the g factor for
electrons confined in the dots ��−0.7�. Consequently, the
resonant change in electron wave-function amplitude in the
barrier does not induce a significant change in the net g
factor. We therefore observe no resonant change in Zeeman
splitting and find g�=0 for QDMs charged with two resident
electrons.

VII. SUMMARY

Doubly charged quantum dot molecules are important el-
ements in many theoretical proposals for the development of
spin-based quantum information processing devices. Before
discussing the implications for specific proposals, it will be
helpful to summarize the results presented so far. For sim-
plicity, we will continue to discuss QDMs charged with two
excess holes.

InAs QDs separated by a GaAs barrier are grown using
molecular-beam epitaxy. The lowest confined energy levels
in each dot are generally not at equal energy but can be tuned
into resonance by an applied electric field. If the QDM is
charged with two excess holes, the holes can be distributed
between the two dots. If both holes are in the same dot, they
must be in a spin singlet. Because tunneling is a spin-
preserving process, only the spin singlet configuration of one
hole in each dot can tunnel couple with the states that have
two holes in a single dot. Triplet configurations cannot par-
ticipate in these tunnel couplings. As a result, singlet and
triplet states are separated by a kinetic exchange energy. The
proximity of multiple singlet anticrossings can induce a ki-
netic exchange energy separating singlet and triplet states
over a wide range of electric fields.

The optically excited state of a doubly charged QDM con-
sists of three holes and one electron. Because we restrict our
analysis to include only the lowest single-particle states �i.e.,
the atomic s-shell state�, there must always be two spin-
paired holes in one dot and a single unpaired hole in the
second dot. When the single hole is located in the same dot
as the electron, the electron-hole exchange splits the state
energies. The anticrossing that arises from tunneling of a
hole between the two dots occurs at a different electric field
from anticrossings in the optical ground state because of
Coulomb interactions.

Resonant tunneling of holes between the two dots results
in the formation of molecular orbitals. These orbitals can be
understood by constructing the symmetric and antisymmetric
combinations of basis states with a single hole localized in
one dot or the other. The symmetric and antisymmetric mo-
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lecular orbitals have bonding and antibonding characters, re-
spectively. The bonding orbital has the lowest energy, though
in the case of holes this is true only for barrier thickness of
less than 3 nm.23 In the optically excited state, the molecular
orbitals are filled with three holes. The lowest-energy con-
figuration has two spin-paired holes in the low-energy bond-
ing state and one unpaired hole in the antibonding orbital. As
a result, the low-energy molecular branch exhibits antibond-
ing properties in magnetophotoluminescence experiments.

The resonant formation of bonding and antibonding orbit-
als results in wave functions with a large amplitude in the
GaAs barrier. This results in a resonant decrease or increase,
respectively, in the heavy-hole g factor. This creates a spin-
dependent tunneling barrier that manifests as a resonant in-
crease or decrease of the Zeeman splitting in photolumines-
cence lines.

We have demonstrated above that the analysis presented
here applies equally well to QDMs containing two excess
electrons or two excess holes. Nevertheless, there are several
differences that we should emphasize. Because of the differ-
ence in effective mass, electrons tunnel more easily and have
anticrossing energy gaps roughly an order of magnitude
larger than that observed for holes tunneling through a bar-
rier of identical thickness.17 The relatively thin barriers used
to study coherent hole tunneling �2–6 nm� result in electron
states that are strongly delocalized at all values of the applied
electric field. Consequently, we typically study electron tun-
neling in samples with a thicker barrier �10–16 nm�. This
thicker barrier results in larger linewidths for indirect transi-
tions as a result of spectral wandering with slight variations
in applied electric field. The typical tunneling rates observed
for electrons suppress the observation of spin fine structure
from electron-hole exchange. Additionally, no resonant
change in g factor due to delocalized wave functions has
been observed for electron tunneling. Unlike electrons, holes
have a strong spin-orbit interaction that can reverse the en-
ergy ordering of bonding and antibonding molecular
orbitals.23,31–34

VIII. IMPLICATIONS FOR QUANTUM INFORMATION

One of the earliest proposals for the implementation of
quantum information processing in the solid state was to use
a single electron confined to a single QD as the qubit.2 Two-
qubit operations were to be executed by lowering the poten-
tial barrier between neighboring dots to allow exchange op-
erations to take place. In self-assembled QDs we have an
alternative method for controlling exchange interactions be-
tween spins in proximate QDs by tuning the energy levels of
the two dots in and out of resonance. This tuning varies the
magnitude of the kinetic exchange interaction, which results
in a tunable energy separation between singlet and triplet
states. In an alternative configuration, the singlet and triplet
states of a doubly charged QDM could be used as the basis
states for a qubit.54 Recent experiments in electrostatically
defined QDs have demonstrated Rabi oscillations in the
singlet-triplet basis3 and measured coherence times of up to
10 �s.3,6 Here we demonstrate electrical control over the
energy separation of singlet and triplet states and discuss

how sample structure can also be used to control the range
over which singlet and triplet states remain separated. The
results are a crucial element for the design of QDMs that can
be coupled to superconducting cavities to enable long-range
quantum gate operations.55

Of particular value in this paper is the analysis of cou-
pling mechanisms in both the optical ground and the opti-
cally excited states. This analysis lays the foundation for the
design of hybrid schemes that utilize both electrical and op-
tical manipulations of spins. Optical manipulation of qubits
can be substantially faster than electrical gating. Recently,
Saikin et al.56 proposed a mechanism to optically generate
entanglement between two electron spins confined in a QDM
by using Coulomb interactions in the optically excited states.
Other methods of coherent control have also been
proposed.57–60 The results presented here are crucial to the
sample design and implementation of such proposals.

Finally, we point out that the resonant contribution of the
barrier to the g factor for molecular orbitals creates a spin-
dependent tunnel barrier. This provides another powerful tool
for the design of spin manipulation protocols in QDMs. At
present this effect has only been observed for hole tunneling,
but there are many reasons to consider hole spins as the
fundamental unit for quantum information processing.61,62
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APPENDIX

In the main text we have described the states of doubly
charged QDMs using atomiclike basis states that account for
the possible spatial distributions and spin orientations. Here
we present a theoretically rigorous definition of the basis
states and the Hamiltonians. We will present only the states
of QDMs charged with two holes; the case of two electrons
is analogous.

We continue to consider only the range of applied electric
fields where the two hole levels are close to resonance but
the electron energies are quite different. The electron is
therefore confined to its energetic ground state �B

e �r� ��Be��,
which corresponds to dominant localization of the electron in
the bottom QD. The electron spin-wave function is given by
��e�= �Sz ,−1 /2�, ��e�= �Sz , +1 /2�. The spatial basis states for
the holes are the two lowest orthonormal states �B

h�r� and
�T

h�r� ��Bh� and �Th��, which are localized primarily in the
bottom or in the top QD. The relative energy of states is
tuned by the applied electric field F. We take the zero of
electric field to be when the two hole states would be degen-
erate in energy in the absence of coupling between the dots.
The heavy-hole spin function �J=3 /2, Jz= �3 /2� is taken to
be a fermion with the pseudospin 1/2. To avoid phase mul-
tipliers in the pseudospin representation,63,64 its projections
are ��h�
�−1 /2�= �Jz , +3 /2� and ��h�
�+1 /2�= �Jz ,−3 /2�.
We construct the many-body basis states from antisymme-
trized products of these single-particle states. For two-
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particle hole spin states, we use the orthogonal singlet and
triplet spin-wave functions: �sij�=2−1/2���i��� j�− ��i��� j��,
��ij

0 �=2−1/2���i��� j�+ ��i��� j��, ��ij
�+1��= ��i��� j�, and ��ij

�−1��
= ��i��� j�.

We consider the electrons to be distinguishable from the
holes. In the envelope function approximation, the many-
particle Hamiltonian of the QDMs consists of three parts:

Ĥ = �
l

ĥl
a + �

l,m
VC��ral − rbm�� + Ĥexch

e-h , �A1�

where a ,b=e or h. The first term gives the single-particle
electron and hole QD Hamiltonians, the second term de-
scribes the Coulomb interactions between particles, and the
third term explicitly includes the short-range electron-hole
exchange. The single-particle Hamiltonians have the follow-

ing matrix elements: �Ba�ĥa�Ba�=�a, �Th�ĥh�Th�=�h−edF,

and �Bh�ĥh�Th�=−t, where �a is the electron or hole confine-
ment energy in single QD, and t is the hole-tunneling rate.
The Coulomb part of the many-particle Hamiltonian gener-
ates eight Coulomb integrals: Vijkl

ab =��drdr��r
−r��−1�i

a��r�� j
a�r��k

b��r���l
b�r��, where i , j ,k , l=B or T. For

direct Coulomb integrals we use abbreviated notations: Vik
ab


Viikk
ab . The short-range electron-hole exchange is deter-

mined using the effective Hamiltonian64

Ĥexch
e-h = A�

i,j
��rei − rhj��̂ez

�i��̂hz
�j�, �A2�

where A is a coupling constant and �̂e�h�z are Pauli matrices.
z is the growth direction, which is the strongest confinement
for electrons and holes. The electron-hole exchange is de-
scribed by the parameter Jij

e-h=��dr��B
e �r��2�i

h��r�� j
h�r�.

For the experiments discussed in this paper, many terms
are sufficiently small that they can be neglected. The abso-
lute values of the Coulomb terms VBBBB

ab are 10–20 meV,
comparable to the separation of single-particle energy levels.
However, these terms always appear on the diagonal of
many-body Hamiltonians as differences that represent the
energy shift between two spatial configurations of charges.
Because they arise from differences, the typical magnitude of
the physical parameters in the Hamiltonians is 1–5 meV.
Typical values for the hole-tunneling rate �t� and intradot
electron-hole exchange �Je-h
JBB

e-h� are at least 0.2 meV. The
terms JTT

e-h and VBTBT
hh are responsible for the exchange ener-

gies between particles in different QDs and can be neglected
because they are less than 1 �eV. VBBBT

ab and JBT
e-h are off-

diagonal Coulomb and exchange matrix elements respon-
sible for small corrections ��10 �eV� to tunneling rates and
can be similarly neglected.

The many-body basis states for the h2+ state, which has
only two holes, are

�1h2+� = �B1
hB2

h��s12� = � 0,0

⇓ ⇑ ,0
�

S
,

�2h2+� = �B1
hT2

h + T1
hB2

h

�2
��s12� = � 0,0

⇓ , ⇑ �S

,

�3h2+� = �B1
hT2

h − T1
hB2

h

�2
���12

0 � = � 0,0

⇓ , ⇑ �T

,

�4h2+� = �B1
hT2

h − T1
hB2

h

�2
���12

�+1�� = � 0,0

⇓ , ⇓ �T

,

�5h2+� = �B1
hT2

h − T1
hB2

h

�2
���12

�−1�� = � 0,0

⇑ , ⇑ �T

,

�6h2+� = �T1
hT2

h��s12� = �0,0

0, ⇓ ⇑ �S
. �A3�

In this basis, the Hamiltonian �Ĥ= ĥ1
h+ ĥ2

h+ �rh2−rh1�−1� is
represented by the matrix of Eq. �7�, with energies refer-
enced to H22=2�h+VBBTT

hh . In Eq. �7� we have used the defi-
nitions

�2 = VBBBB
hh − VBBTT

hh ,

�3 = VTTTT
hh − VBBTT

hh . �A4�

The triplet states are degenerate at zero magnetic field and
decoupled from the singlet states and can thus be removed
from the matrix. The singlet eigenstates can be calculated
from the determinant of the remaining 3�3 matrix.

The many-body basis states for the X2+ state, which has
one electron and three holes, are

�1X2+� =
�Be,�e�

�3
��B1B2T3��s12,�3� + �B1T2B3��s31,�2�

+ �T1B2B3��s23,�1�� = � ↑ ,0

⇓ ⇑ , ⇓ � ,

�2X2+� =
�Be,�e�

�3
��B1B2T3��s12,�3� + �B1T2B3��s31,�2�

+ �T1B2B3��s23,�1�� = � ↓ ,0

⇓ ⇑ , ⇑ � ,

�3X2+� =
�Be,�e�

�3
��B1B2T3��s12,�3� + �B1T2B3��s31,�2�

+ �T1B2B3��s23,�1�� = � ↑ ,0

⇓ ⇑ , ⇑ � ,

�4X2+� =
�Be,�e�

�3
��B1B2T3��s12,�3� + �B1T2B3��s31,�2�

+ �T1B2B3��s23,�1�� = � ↓ ,0

⇓ ⇑ , ⇓ � ,

�5X2+� =
�Be,�e�

�3
��T1T2B3��s12,�3� + �T1B2T3��s31,�2�

+ �B1T2T3��s23,�1�� = �↑ ,0

⇓ , ⇓ ⇑ � ,
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�6X2+� =
�Be,�e�

�3
��T1T2B3��s12,�3� + �T1B2T3��s31,�2�

+ �B1T2T3��s23,�1�� = �↓ ,0

⇑ , ⇓ ⇑ � ,

�7X2+� =
�Be,�e�

�3
��T1T2B3��s12,�3� + �T1B2T3��s31,�2�

+ �B1T2T3��s23,�1�� = �↑ ,0

⇑ , ⇓ ⇑ � ,

�8X2+� =
�Be,�e�

�3
��T1T2B3��s12,�3� + �T1B2T3��s31,�2�

+ �B1T2T3��s23,�1�� = �↓ ,0

⇓ , ⇓ ⇑ � . �A5�

The Hamiltonian is Ĥ= Ĥ�1�+ V̂C+ Ĥexch
e-h , where

Ĥ�1� = ĥ1
e + �

i=1

3

ĥi
h,

V̂C = − �re − rh1�−1 − �re − rh2�−1 − �re − rh3�−1 + �rh1 − rh2�−1

+ �rh1 − rh3�−1 + �rh2 − rh3�−1, �A6�

Ĥexch
e-h = A�

i=1

3

��re − rhi��̂ez�̂zi. �A7�

The full Hamiltonian is given in Eq. �8�, where we reference the energies to �=�e+3�h−VBBBB
eh +VTTTT

hh −2VBBTT
eh +2VBBTT

hh ,
which is the energy of the states with two holes in the top dot and one hole in the bottom dot, neglecting the Stark shift and
electron-hole exchange. �4=−VBBBB

eh +VBBBB
hh −VTTTT

hh +VBBTT
eh captures the energy shift of moving one hole from the top to the

bottom dot. The eigenenergies of Eq. �8� are

E = � + 1/2�edF � Je-h + �4 � �edF2 � 2edFJe-h + �Je-h�2 + 4tX2+
2 − 2edF�4 � 2Je-h�4 + �4

2� . �A8�
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